Computer Science > Machine Learning
[Submitted on 30 Nov 2022 (v1), last revised 12 Sep 2023 (this version, v3)]
Title:Computationally Efficient Reinforcement Learning: Targeted Exploration leveraging Simple Rules
View PDFAbstract:Model-free Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state-action space to find well-performing policies. On the other hand, we postulate that expert knowledge of the system often allows us to design simple rules we expect good policies to follow at all times. In this work, we hence propose a simple yet effective modification of continuous actor-critic frameworks to incorporate such rules and avoid regions of the state-action space that are known to be suboptimal, thereby significantly accelerating the convergence of RL agents. Concretely, we saturate the actions chosen by the agent if they do not comply with our intuition and, critically, modify the gradient update step of the policy to ensure the learning process is not affected by the saturation step. On a room temperature control case study, it allows agents to converge to well-performing policies up to 6-7x faster than classical agents without computational overhead and while retaining good final performance.
Submission history
From: Loris Di Natale [view email][v1] Wed, 30 Nov 2022 02:24:42 UTC (1,930 KB)
[v2] Sat, 1 Apr 2023 09:20:45 UTC (1,102 KB)
[v3] Tue, 12 Sep 2023 09:39:42 UTC (1,103 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.