Mathematics > Numerical Analysis
[Submitted on 29 Nov 2022]
Title:Solving High Dimensional Partial Differential Equations Using Tensor Type Discretization and Optimization Process
View PDFAbstract:In this paper, we propose a tensor type of discretization and optimization process for solving high dimensional partial differential equations. First, we design the tensor type of trial function for the high dimensional partial differential equations. Based on the tensor structure of the trial functions, we can do the direct numerical integration of the approximate solution without the help of Monte-Carlo method. Then combined with the Ritz or Galerkin method, solving the high dimensional partial differential equation can be transformed to solve a concerned optimization problem. Some numerical tests are provided to validate the proposed numerical methods.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.