Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2022]
Title:Look Around and Refer: 2D Synthetic Semantics Knowledge Distillation for 3D Visual Grounding
View PDFAbstract:The 3D visual grounding task has been explored with visual and language streams comprehending referential language to identify target objects in 3D scenes. However, most existing methods devote the visual stream to capturing the 3D visual clues using off-the-shelf point clouds encoders. The main question we address in this paper is "can we consolidate the 3D visual stream by 2D clues synthesized from point clouds and efficiently utilize them in training and testing?". The main idea is to assist the 3D encoder by incorporating rich 2D object representations without requiring extra 2D inputs. To this end, we leverage 2D clues, synthetically generated from 3D point clouds, and empirically show their aptitude to boost the quality of the learned visual representations. We validate our approach through comprehensive experiments on Nr3D, Sr3D, and ScanRefer datasets and show consistent performance gains compared to existing methods. Our proposed module, dubbed as Look Around and Refer (LAR), significantly outperforms the state-of-the-art 3D visual grounding techniques on three benchmarks, i.e., Nr3D, Sr3D, and ScanRefer. The code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.