Computer Science > Data Structures and Algorithms
[Submitted on 22 Nov 2022]
Title:An Algorithmic Bridge Between Hamming and Levenshtein Distances
View PDFAbstract:The edit distance between strings classically assigns unit cost to every character insertion, deletion, and substitution, whereas the Hamming distance only allows substitutions. In many real-life scenarios, insertions and deletions (abbreviated indels) appear frequently but significantly less so than substitutions. To model this, we consider substitutions being cheaper than indels, with cost $1/a$ for a parameter $a\ge 1$. This basic variant, denoted $ED_a$, bridges classical edit distance ($a=1$) with Hamming distance ($a\to\infty$), leading to interesting algorithmic challenges: Does the time complexity of computing $ED_a$ interpolate between that of Hamming distance (linear time) and edit distance (quadratic time)? What about approximating $ED_a$?
We first present a simple deterministic exact algorithm for $ED_a$ and further prove that it is near-optimal assuming the Orthogonal Vectors Conjecture. Our main result is a randomized algorithm computing a $(1+\epsilon)$-approximation of $ED_a(X,Y)$, given strings $X,Y$ of total length $n$ and a bound $k\ge ED_a(X,Y)$. For simplicity, let us focus on $k\ge 1$ and a constant $\epsilon > 0$; then, our algorithm takes $\tilde{O}(n/a + ak^3)$ time. Unless $a=\tilde{O}(1)$ and for small enough $k$, this running time is sublinear in $n$. We also consider a very natural version that asks to find a $(k_I, k_S)$-alignment -- an alignment with at most $k_I$ indels and $k_S$ substitutions. In this setting, we give an exact algorithm and, more importantly, an $\tilde{O}(nk_I/k_S + k_S\cdot k_I^3)$-time $(1,1+\epsilon)$-bicriteria approximation algorithm. The latter solution is based on the techniques we develop for $ED_a$ for $a=\Theta(k_S / k_I)$. These bounds are in stark contrast to unit-cost edit distance, where state-of-the-art algorithms are far from achieving $(1+\epsilon)$-approximation in sublinear time, even for a favorable choice of $k$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.