Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Nov 2022]
Title:Confidence-guided Centroids for Unsupervised Person Re-Identification
View PDFAbstract:Unsupervised person re-identification (ReID) aims to train a feature extractor for identity retrieval without exploiting identity labels. Due to the blind trust in imperfect clustering results, the learning is inevitably misled by unreliable pseudo labels. Albeit the pseudo label refinement has been investigated by previous works, they generally leverage auxiliary information such as camera IDs and body part predictions. This work explores the internal characteristics of clusters to refine pseudo labels. To this end, Confidence-Guided Centroids (CGC) are proposed to provide reliable cluster-wise prototypes for feature learning. Since samples with high confidence are exclusively involved in the formation of centroids, the identity information of low-confidence samples, i.e., boundary samples, are NOT likely to contribute to the corresponding centroid. Given the new centroids, current learning scheme, where samples are enforced to learn from their assigned centroids solely, is unwise. To remedy the situation, we propose to use Confidence-Guided pseudo Label (CGL), which enables samples to approach not only the originally assigned centroid but other centroids that are potentially embedded with their identity information. Empowered by confidence-guided centroids and labels, our method yields comparable performance with, or even outperforms, state-of-the-art pseudo label refinement works that largely leverage auxiliary information.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.