Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Nov 2022]
Title:GLT-T: Global-Local Transformer Voting for 3D Single Object Tracking in Point Clouds
View PDFAbstract:Current 3D single object tracking methods are typically based on VoteNet, a 3D region proposal network. Despite the success, using a single seed point feature as the cue for offset learning in VoteNet prevents high-quality 3D proposals from being generated. Moreover, seed points with different importance are treated equally in the voting process, aggravating this defect. To address these issues, we propose a novel global-local transformer voting scheme to provide more informative cues and guide the model pay more attention on potential seed points, promoting the generation of high-quality 3D proposals. Technically, a global-local transformer (GLT) module is employed to integrate object- and patch-aware prior into seed point features to effectively form strong feature representation for geometric positions of the seed points, thus providing more robust and accurate cues for offset learning. Subsequently, a simple yet effective training strategy is designed to train the GLT module. We develop an importance prediction branch to learn the potential importance of the seed points and treat the output weights vector as a training constraint term. By incorporating the above components together, we exhibit a superior tracking method GLT-T. Extensive experiments on challenging KITTI and NuScenes benchmarks demonstrate that GLT-T achieves state-of-the-art performance in the 3D single object tracking task. Besides, further ablation studies show the advantages of the proposed global-local transformer voting scheme over the original VoteNet. Code and models will be available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.