Computer Science > Machine Learning
[Submitted on 20 Nov 2022 (v1), last revised 20 Nov 2023 (this version, v4)]
Title:Single-Pass Contrastive Learning Can Work for Both Homophilic and Heterophilic Graph
View PDFAbstract:Existing graph contrastive learning (GCL) techniques typically require two forward passes for a single instance to construct the contrastive loss, which is effective for capturing the low-frequency signals of node features. Such a dual-pass design has shown empirical success on homophilic graphs, but its effectiveness on heterophilic graphs, where directly connected nodes typically have different labels, is unknown. In addition, existing GCL approaches fail to provide strong performance guarantees. Coupled with the unpredictability of GCL approaches on heterophilic graphs, their applicability in real-world contexts is limited. Then, a natural question arises: Can we design a GCL method that works for both homophilic and heterophilic graphs with a performance guarantee? To answer this question, we theoretically study the concentration property of features obtained by neighborhood aggregation on homophilic and heterophilic graphs, introduce the single-pass augmentation-free graph contrastive learning loss based on the property, and provide performance guarantees for the minimizer of the loss on downstream tasks. As a direct consequence of our analysis, we implement the Single-Pass Graph Contrastive Learning method (SP-GCL). Empirically, on 14 benchmark datasets with varying degrees of homophily, the features learned by the SP-GCL can match or outperform existing strong baselines with significantly less computational overhead, which demonstrates the usefulness of our findings in real-world cases.
Submission history
From: Haonan Wang [view email][v1] Sun, 20 Nov 2022 07:18:56 UTC (1,012 KB)
[v2] Wed, 29 Mar 2023 04:04:55 UTC (1,055 KB)
[v3] Sun, 23 Jul 2023 05:19:24 UTC (1,064 KB)
[v4] Mon, 20 Nov 2023 05:25:23 UTC (1,155 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.