Computer Science > Data Structures and Algorithms
[Submitted on 18 Nov 2022]
Title:Efficient Determinant Maximization for All Matroids
View PDFAbstract:Determinant maximization provides an elegant generalization of problems in many areas, including convex geometry, statistics, machine learning, fair allocation of goods, and network design. In an instance of the determinant maximization problem, we are given a collection of vectors $v_1,\ldots, v_n \in \mathbb{R}^d$, and the goal is to pick a subset $S\subseteq [n]$ of given vectors to maximize the determinant of the matrix $\sum_{i \in S} v_iv_i^\top$, where the picked set of vectors $S$ must satisfy some combinatorial constraint such as cardinality constraint ($|S| \leq k$) or matroid constraint ($S$ is a basis of a matroid defined on $[n]$).
In this work, we give a combinatorial algorithm for the determinant maximization problem under a matroid constraint that achieves $O(d^{O(d)})$-approximation for any matroid of rank $r\geq d$. This complements the recent result of~\cite{BrownLPST22} that achieves a similar bound for matroids of rank $r\leq d$, relying on a geometric interpretation of the determinant. Our result matches the best-known estimation algorithms~\cite{madan2020maximizing} for the problem, which could estimate the objective value but could not give an approximate solution with a similar guarantee. Our work follows the framework developed by~\cite{BrownLPST22} of using matroid intersection based algorithms for determinant maximization. To overcome the lack of a simple geometric interpretation of the objective when $r \geq d$, our approach combines ideas from combinatorial optimization with algebraic properties of the determinant. We also critically use the properties of a convex programming relaxation of the problem introduced by~\cite{madan2020maximizing}.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.