Computer Science > Computation and Language
[Submitted on 8 Nov 2022 (v1), last revised 14 Mar 2023 (this version, v2)]
Title:Active Relation Discovery: Towards General and Label-aware Open Relation Extraction
View PDFAbstract:Open Relation Extraction (OpenRE) aims to discover novel relations from open domains. Previous OpenRE methods mainly suffer from two problems: (1) Insufficient capacity to discriminate between known and novel relations. When extending conventional test settings to a more general setting where test data might also come from seen classes, existing approaches have a significant performance decline. (2) Secondary labeling must be performed before practical application. Existing methods cannot label human-readable and meaningful types for novel relations, which is urgently required by the downstream tasks. To address these issues, we propose the Active Relation Discovery (ARD) framework, which utilizes relational outlier detection for discriminating known and novel relations and involves active learning for labeling novel relations. Extensive experiments on three real-world datasets show that ARD significantly outperforms previous state-of-the-art methods on both conventional and our proposed general OpenRE settings. The source code and datasets will be available for reproducibility.
Submission history
From: Yangning Li [view email][v1] Tue, 8 Nov 2022 13:01:17 UTC (11,060 KB)
[v2] Tue, 14 Mar 2023 07:15:08 UTC (11,025 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.