Computer Science > Human-Computer Interaction
[Submitted on 9 Nov 2022]
Title:Discovering the Hidden Facts of User-Dispatcher Interactions via Text-based Reporting Systems for Community Safety
View PDFAbstract:Recently, an increasing number of safety organizations in the U.S. have incorporated text-based risk reporting systems to respond to safety incident reports from their community members. To gain a better understanding of the interaction between community members and dispatchers using text-based risk reporting systems, this study conducts a system log analysis of LiveSafe, a community safety reporting system, to provide empirical evidence of the conversational patterns between users and dispatchers using both quantitative and qualitative methods. We created an ontology to capture information (e.g., location, attacker, target, weapon, start-time, and end-time, etc.) that dispatchers often collected from users regarding their incident tips. Applying the proposed ontology, we found that dispatchers often asked users for different information across varied event types (e.g., Attacker for Abuse and Attack events, Target for Harassment events). Additionally, using emotion detection and regression analysis, we found an inconsistency in dispatchers' emotional support and responsiveness to users' messages between different organizations and between incident categories. The results also showed that users had a higher response rate and responded quicker when dispatchers provided emotional support. These novel findings brought significant insights to both practitioners and system designers, e.g., AI-based solutions to augment human agents' skills for improved service quality.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.