Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 4 Nov 2022]
Title:Rethinking Storage Management for Data Processing Pipelines in Cloud Data Centers
View PDFAbstract:Data processing frameworks such as Apache Beam and Apache Spark are used for a wide range of applications, from logs analysis to data preparation for DNN training. It is thus unsurprising that there has been a large amount of work on optimizing these frameworks, including their storage management. The shift to cloud computing requires optimization across all pipelines concurrently running across a cluster. In this paper, we look at one specific instance of this problem: placement of I/O-intensive temporary intermediate data on SSD and HDD. Efficient data placement is challenging since I/O density is usually unknown at the time data needs to be placed. Additionally, external factors such as load variability, job preemption, or job priorities can impact job completion times, which ultimately affect the I/O density of the temporary files in the workload. In this paper, we envision that machine learning can be used to solve this problem. We analyze production logs from Google's data centers for a range of data processing pipelines. Our analysis shows that I/O density may be predictable. This suggests that learning-based strategies, if crafted carefully, could extract predictive features for I/O density of temporary files involved in various transformations, which could be used to improve the efficiency of storage management in data processing pipelines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.