Electrical Engineering and Systems Science > Systems and Control
[Submitted on 5 Nov 2022]
Title:An STL-based Approach to Resilient Control for Cyber-Physical Systems
View PDFAbstract:We present ResilienC, a framework for resilient control of Cyber-Physical Systems subject to STL-based requirements. ResilienC utilizes a recently developed formalism for specifying CPS resiliency in terms of sets of $(\mathit{rec},\mathit{dur})$ real-valued pairs, where $\mathit{rec}$ represents the system's capability to rapidly recover from a property violation (recoverability), and $\mathit{dur}$ is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori $\epsilon$-constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto-optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.