Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 3 Nov 2022]
Title:Convolution channel separation and frequency sub-bands aggregation for music genre classification
View PDFAbstract:In music, short-term features such as pitch and tempo constitute long-term semantic features such as melody and narrative. A music genre classification (MGC) system should be able to analyze these features. In this research, we propose a novel framework that can extract and aggregate both short- and long-term features hierarchically. Our framework is based on ECAPA-TDNN, where all the layers that extract short-term features are affected by the layers that extract long-term features because of the back-propagation training. To prevent the distortion of short-term features, we devised the convolution channel separation technique that separates short-term features from long-term feature extraction paths. To extract more diverse features from our framework, we incorporated the frequency sub-bands aggregation method, which divides the input spectrogram along frequency bandwidths and processes each segment. We evaluated our framework using the Melon Playlist dataset which is a large-scale dataset containing 600 times more data than GTZAN which is a widely used dataset in MGC studies. As the result, our framework achieved 70.4% accuracy, which was improved by 16.9% compared to a conventional framework.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.