Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2022 (v1), last revised 14 Jul 2023 (this version, v2)]
Title:HDHumans: A Hybrid Approach for High-fidelity Digital Humans
View PDFAbstract:Photo-real digital human avatars are of enormous importance in graphics, as they enable immersive communication over the globe, improve gaming and entertainment experiences, and can be particularly beneficial for AR and VR settings. However, current avatar generation approaches either fall short in high-fidelity novel view synthesis, generalization to novel motions, reproduction of loose clothing, or they cannot render characters at the high resolution offered by modern displays. To this end, we propose HDHumans, which is the first method for HD human character synthesis that jointly produces an accurate and temporally coherent 3D deforming surface and highly photo-realistic images of arbitrary novel views and of motions not seen at training time. At the technical core, our method tightly integrates a classical deforming character template with neural radiance fields (NeRF). Our method is carefully designed to achieve a synergy between classical surface deformation and NeRF. First, the template guides the NeRF, which allows synthesizing novel views of a highly dynamic and articulated character and even enables the synthesis of novel motions. Second, we also leverage the dense pointclouds resulting from NeRF to further improve the deforming surface via 3D-to-3D supervision. We outperform the state of the art quantitatively and qualitatively in terms of synthesis quality and resolution, as well as the quality of 3D surface reconstruction.
Submission history
From: Marc Habermann [view email][v1] Fri, 21 Oct 2022 14:42:11 UTC (14,502 KB)
[v2] Fri, 14 Jul 2023 07:07:07 UTC (9,191 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.