Computer Science > Social and Information Networks
[Submitted on 10 Oct 2022]
Title:Region2Vec: Community Detection on Spatial Networks Using Graph Embedding with Node Attributes and Spatial Interactions
View PDFAbstract:Community Detection algorithms are used to detect densely connected components in complex networks and reveal underlying relationships among components. As a special type of networks, spatial networks are usually generated by the connections among geographic regions. Identifying the spatial network communities can help reveal the spatial interaction patterns, understand the hidden regional structures and support regional development decision-making. Given the recent development of Graph Convolutional Networks (GCN) and its powerful performance in identifying multi-scale spatial interactions, we proposed an unsupervised GCN-based community detection method "region2vec" on spatial networks. Our method first generates node embeddings for regions that share common attributes and have intense spatial interactions, and then applies clustering algorithms to detect communities based on their embedding similarity and spatial adjacency. Experimental results show that while existing methods trade off either attribute similarities or spatial interactions for one another, "region2vec" maintains a great balance between both and performs the best when one wants to maximize both attribute similarities and spatial interactions within communities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.