Computer Science > Information Theory
[Submitted on 17 Oct 2022]
Title:On construction of quantum codes with dual-containing quasi-cyclic codes
View PDFAbstract:One of the main objectives of quantum error-correction theory is to construct quantum codes with optimal parameters and properties. In this paper, we propose a class of 2-generator quasi-cyclic codes and study their applications in the construction of quantum codes over small fields. Firstly, some sufficient conditions for these 2-generator quasi-cyclic codes to be dual-containing concerning Hermitian inner product are determined. Then, we utilize these Hermitian dual-containing quasi-cyclic codes to produce quantum codes via the famous Hermitian construction. Moreover, we present a lower bound on the minimum distance of these quasi-cyclic codes, which is helpful to construct quantum codes with larger lengths and dimensions. As the computational results, many new quantum codes that exceed the quantum Gilbert-Varshamov bound are constructed over $F_q$, where $q$ is $2,3,4,5$. In particular, 16 binary quantum codes raise the lower bound on the minimum distance in Grassl's table \cite{Grassl:codetables}. In nonbinary cases, many quantum codes are new or have better parameters than those in the literature.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.