Computer Science > Cryptography and Security
[Submitted on 13 Oct 2022 (v1), last revised 20 Jun 2023 (this version, v2)]
Title:PoliGraph: Automated Privacy Policy Analysis using Knowledge Graphs
View PDFAbstract:Privacy policies disclose how an organization collects and handles personal information. Recent work has made progress in leveraging natural language processing (NLP) to automate privacy policy analysis and extract data collection statements from different sentences, considered in isolation from each other. In this paper, we view and analyze, for the first time, the entire text of a privacy policy in an integrated way. In terms of methodology: (1) we define PoliGraph, a type of knowledge graph that captures statements in a privacy policy as relations between different parts of the text; and (2) we develop an NLP-based tool, PoliGraph-er, to automatically extract PoliGraph from the text. In addition, (3) we revisit the notion of ontologies, previously defined in heuristic ways, to capture subsumption relations between terms. We make a clear distinction between local and global ontologies to capture the context of individual privacy policies, application domains, and privacy laws. Using a public dataset for evaluation, we show that PoliGraph-er identifies 40% more collection statements than prior state-of-the-art, with 97% precision. In terms of applications, PoliGraph enables automated analysis of a corpus of privacy policies and allows us to: (1) reveal common patterns in the texts across different privacy policies, and (2) assess the correctness of the terms as defined within a privacy policy. We also apply PoliGraph to: (3) detect contradictions in a privacy policy, where we show false alarms by prior work, and (4) analyze the consistency of privacy policies and network traffic, where we identify significantly more clear disclosures than prior work.
Submission history
From: Hao Cui [view email][v1] Thu, 13 Oct 2022 05:16:22 UTC (398 KB)
[v2] Tue, 20 Jun 2023 19:45:23 UTC (417 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.