Computer Science > Computer Vision and Pattern Recognition
[Submitted on 13 Oct 2022 (v1), last revised 19 Apr 2023 (this version, v2)]
Title:Overlooked Video Classification in Weakly Supervised Video Anomaly Detection
View PDFAbstract:Current weakly supervised video anomaly detection algorithms mostly use multiple instance learning (MIL) or their varieties. Almost all recent approaches focus on how to select the correct snippets for training to improve the performance. They overlook or do not realize the power of video classification in boosting the performance of anomaly detection. In this paper, we study explicitly the power of video classification supervision using a BERT or LSTM. With this BERT or LSTM, CNN features of all snippets of a video can be aggregated into a single feature which can be used for video classification. This simple yet powerful video classification supervision, combined into the MIL framework, brings extraordinary performance improvement on all three major video anomaly detection datasets. Particularly it improves the mean average precision (mAP) on the XD-Violence from SOTA 78.84\% to new 82.10\%. The source code is available at this https URL.
Submission history
From: Weijun Tan [view email][v1] Thu, 13 Oct 2022 03:00:22 UTC (421 KB)
[v2] Wed, 19 Apr 2023 22:23:33 UTC (421 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.