Computer Science > Computation and Language
[Submitted on 12 Oct 2022]
Title:DATScore: Evaluating Translation with Data Augmented Translations
View PDFAbstract:The rapid development of large pretrained language models has revolutionized not only the field of Natural Language Generation (NLG) but also its evaluation. Inspired by the recent work of BARTScore: a metric leveraging the BART language model to evaluate the quality of generated text from various aspects, we introduce DATScore. DATScore uses data augmentation techniques to improve the evaluation of machine translation. Our main finding is that introducing data augmented translations of the source and reference texts is greatly helpful in evaluating the quality of the generated translation. We also propose two novel score averaging and term weighting strategies to improve the original score computing process of BARTScore. Experimental results on WMT show that DATScore correlates better with human meta-evaluations than the other recent state-of-the-art metrics, especially for low-resource languages. Ablation studies demonstrate the value added by our new scoring strategies. Moreover, we report in our extended experiments the performance of DATScore on 3 NLG tasks other than translation.
Submission history
From: Moussa Kamal Eddine [view email][v1] Wed, 12 Oct 2022 20:31:42 UTC (6,500 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.