Computer Science > Machine Learning
[Submitted on 12 Oct 2022 (v1), last revised 22 Oct 2023 (this version, v3)]
Title:Clustering the Sketch: A Novel Approach to Embedding Table Compression
View PDFAbstract:Embedding tables are used by machine learning systems to work with categorical features. In modern Recommendation Systems, these tables can be very large, necessitating the development of new methods for fitting them in memory, even during training. We suggest Clustered Compositional Embeddings (CCE) which combines clustering-based compression like quantization to codebooks with dynamic methods like The Hashing Trick and Compositional Embeddings (Shi et al., 2020). Experimentally CCE achieves the best of both worlds: The high compression rate of codebook-based quantization, but *dynamically* like hashing-based methods, so it can be used during training. Theoretically, we prove that CCE is guaranteed to converge to the optimal codebook and give a tight bound for the number of iterations required.
Submission history
From: Thomas D. Ahle [view email][v1] Wed, 12 Oct 2022 07:37:01 UTC (1,446 KB)
[v2] Tue, 31 Jan 2023 02:54:03 UTC (1,582 KB)
[v3] Sun, 22 Oct 2023 02:42:20 UTC (11,859 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.