Computer Science > Machine Learning
[Submitted on 6 Oct 2022 (v1), last revised 10 Oct 2022 (this version, v2)]
Title:Comparison of Missing Data Imputation Methods using the Framingham Heart study dataset
View PDFAbstract:Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels and according to World Health Organization is the leading cause of death worldwide. EHR data regarding this case, as well as medical cases in general, contain missing values very frequently. The percentage of missingness may vary and is linked with instrument errors, manual data entry procedures, etc. Even though the missing rate is usually significant, in many cases the missing value imputation part is handled poorly either with case-deletion or with simple statistical approaches such as mode and median imputation. These methods are known to introduce significant bias, since they do not account for the relationships between the dataset's variables. Within the medical framework, many datasets consist of lab tests or patient medical tests, where these relationships are present and strong. To address these limitations, in this paper we test and modify state-of-the-art missing value imputation methods based on Generative Adversarial Networks (GANs) and Autoencoders. The evaluation is accomplished for both the tasks of data imputation and post-imputation prediction. Regarding the imputation task, we achieve improvements of 0.20, 7.00% in normalised Root Mean Squared Error (RMSE) and Area Under the Receiver Operating Characteristic Curve (AUROC) respectively. In terms of the post-imputation prediction task, our models outperform the standard approaches by 2.50% in F1-score.
Submission history
From: Loukas Ilias [view email][v1] Thu, 6 Oct 2022 18:35:08 UTC (654 KB)
[v2] Mon, 10 Oct 2022 07:22:00 UTC (650 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.