Computer Science > Computation and Language
[Submitted on 7 Oct 2022]
Title:Breaking BERT: Evaluating and Optimizing Sparsified Attention
View PDFAbstract:Transformers allow attention between all pairs of tokens, but there is reason to believe that most of these connections - and their quadratic time and memory - may not be necessary. But which ones? We evaluate the impact of sparsification patterns with a series of ablation experiments. First, we compare masks based on syntax, lexical similarity, and token position to random connections, and measure which patterns reduce performance the least. We find that on three common finetuning tasks even using attention that is at least 78% sparse can have little effect on performance if applied at later transformer layers, but that applying sparsity throughout the network reduces performance significantly. Second, we vary the degree of sparsity for three patterns supported by previous work, and find that connections to neighbouring tokens are the most significant. Finally, we treat sparsity as an optimizable parameter, and present an algorithm to learn degrees of neighboring connections that gives a fine-grained control over the accuracy-sparsity trade-off while approaching the performance of existing methods.
Submission history
From: Polina Zablotskaia [view email][v1] Fri, 7 Oct 2022 22:32:27 UTC (4,941 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.