Computer Science > Machine Learning
[Submitted on 5 Oct 2022]
Title:Reward-Mixing MDPs with a Few Latent Contexts are Learnable
View PDFAbstract:We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs): at the beginning of every episode nature randomly picks a latent reward model among $M$ candidates and an agent interacts with the MDP throughout the episode for $H$ time steps. Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model. Previous work established an upper bound for RMMDPs for $M=2$. In this work, we resolve several open questions remained for the RMMDP model. For an arbitrary $M\ge2$, we provide a sample-efficient algorithm--$\texttt{EM}^2$--that outputs an $\epsilon$-optimal policy using $\tilde{O} \left(\epsilon^{-2} \cdot S^d A^d \cdot \texttt{poly}(H, Z)^d \right)$ episodes, where $S, A$ are the number of states and actions respectively, $H$ is the time-horizon, $Z$ is the support size of reward distributions and $d=\min(2M-1,H)$. Our technique is a higher-order extension of the method-of-moments based approach, nevertheless, the design and analysis of the \algname algorithm requires several new ideas beyond existing techniques. We also provide a lower bound of $(SA)^{\Omega(\sqrt{M})} / \epsilon^{2}$ for a general instance of RMMDP, supporting that super-polynomial sample complexity in $M$ is necessary.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.