Computer Science > Computation and Language
[Submitted on 3 Oct 2022 (v1), last revised 2 May 2023 (this version, v2)]
Title:ContraCLM: Contrastive Learning For Causal Language Model
View PDFAbstract:Despite exciting progress in causal language models, the expressiveness of the representations is largely limited due to poor discrimination ability. To remedy this issue, we present ContraCLM, a novel contrastive learning framework at both token-level and sequence-level. We assess ContraCLM on a variety of downstream tasks. We show that ContraCLM enhances discrimination of the representations and bridges the gap with the encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain $44\%$ relative improvement on the Semantic Textual Similarity tasks and $34\%$ on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of the representations, ContraCLM also boosts the source code generation capability with $9\%$ relative improvement on execution accuracy on the HumanEval benchmark.
Submission history
From: Dejiao Zhang [view email][v1] Mon, 3 Oct 2022 18:56:35 UTC (899 KB)
[v2] Tue, 2 May 2023 22:46:46 UTC (8,298 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.