Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 3 Oct 2022]
Title:An Almost Singularly Optimal Asynchronous Distributed MST Algorithm
View PDFAbstract:A singularly (near) optimal distributed algorithm is one that is (near) optimal in \emph{two} criteria, namely, its time and message complexities. For \emph{synchronous} CONGEST networks, such algorithms are known for fundamental distributed computing problems such as leader election [Kutten et al., JACM 2015] and Minimum Spanning Tree (MST) construction [Pandurangan et al., STOC 2017, Elkin, PODC 2017]. However, it is open whether a singularly (near) optimal bound can be obtained for the MST construction problem in general \emph{asynchronous} CONGEST networks.
We present a randomized distributed MST algorithm that, with high probability, computes an MST in \emph{asynchronous} CONGEST networks and takes $\tilde{O}(D^{1+\epsilon} + \sqrt{n})$ time and $\tilde{O}(m)$ messages, where $n$ is the number of nodes, $m$ the number of edges, $D$ is the diameter of the network, and $\epsilon >0$ is an arbitrarily small constant (both time and message bounds hold with high probability). Our algorithm is message optimal (up to a polylog$(n)$ factor) and almost time optimal (except for a $D^{\epsilon}$ factor). Our result answers an open question raised in Mashregi and King [DISC 2019] by giving the first known asynchronous MST algorithm that has sublinear time (for all $D = O(n^{1-\epsilon})$) and uses $\tilde{O}(m)$ messages. Using a result of Mashregi and King [DISC 2019], this also yields the first asynchronous MST algorithm that is sublinear in both time and messages in the $KT_1$ CONGEST model.
A key tool in our algorithm is the construction of a low diameter rooted spanning tree in asynchronous CONGEST that has depth $\tilde{O}(D^{1+\epsilon})$ (for an arbitrarily small constant $\epsilon > 0$) in $\tilde{O}(D^{1+\epsilon})$ time and $\tilde{O}(m)$ messages. To the best of our knowledge, this is the first such construction that is almost singularly optimal in the asynchronous setting.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.