Astrophysics > Earth and Planetary Astrophysics
[Submitted on 3 Oct 2022]
Title:Radiation protection and shielding materials for crewed missions on the surface of Mars
View PDFAbstract:A potential crewed mission to Mars would require us to solve a number of problems, including how to protect astronauts against the devastating effects of energetic charged particles from Solar and Galactic sources. The radiation environment on Mars is of particular interest, since maintaining optimal absorbed doses by astronauts is crucial to their survival. Here, we give an overview of the conditions on Mars, as determined by theoretical models and in-situ measurements, and present the main proposed strategies to mitigate radiation exposure while on Mars. Specifically, we focus on the passive shielding technique. Several widely used materials, along with some innovative ones and combinations of those, are studied for their behavior against Solar Energetic Particle Events and Galactic Cosmic Rays in the Martian environment. For that purpose, we implement the GEANT4 package, a Monte-Carlo numerical model developed by CERN, which is specifically applied to simulate interactions of radiation with matter. A description of our model will be given, followed by outputs of the numerical model. We conclude that hydrogen-rich materials act as better attenuators, as expected, but other materials can be helpful against cosmic rays too.
Current browse context:
astro-ph.EP
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.