Computer Science > Computational Complexity
[Submitted on 30 Sep 2022]
Title:A Multivariate Complexity Analysis of Qualitative Reasoning Problems
View PDFAbstract:Qualitative reasoning is an important subfield of artificial intelligence where one describes relationships with qualitative, rather than numerical, relations. Many such reasoning tasks, e.g., Allen's interval algebra, can be solved in $2^{O(n \cdot \log n)}$ time, but single-exponential running times $2^{O(n)}$ are currently far out of reach. In this paper we consider single-exponential algorithms via a multivariate analysis consisting of a fine-grained parameter $n$ (e.g., the number of variables) and a coarse-grained parameter $k$ expected to be relatively small. We introduce the classes FPE and XE of problems solvable in $f(k) \cdot 2^{O(n)}$, respectively $f(k)^n$, time, and prove several fundamental properties of these classes. We proceed by studying temporal reasoning problems and (1) show that the Partially Ordered Time problem of effective width $k$ is solvable in $16^{kn}$ time and is thus included in XE, and (2) that the network consistency problem for Allen's interval algebra with no interval overlapping with more than $k$ others is solvable in $(2nk)^{2k} \cdot 2^{n}$ time and is included in FPE. Our multivariate approach is in no way limited to these to specific problems and may be a generally useful approach for obtaining single-exponential algorithms.
Submission history
From: Victor Lagerkvist Dr. [view email][v1] Fri, 30 Sep 2022 07:29:53 UTC (57 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.