Computer Science > Neural and Evolutionary Computing
[Submitted on 29 Sep 2022]
Title:Scaling transformation of the multimode nonlinear Schrödinger equation for physics-informed neural networks
View PDFAbstract:Single-mode optical fibers (SMFs) have become the backbone of modern communication systems. However, their throughput is expected to reach its theoretical limit in the nearest future. Utilization of multimode fibers (MMFs) is considered as one of the most promising solutions rectifying this capacity crunch. Nevertheless, differential equations describing light propagation in MMFs are a way more sophisticated than those for SMFs, which makes numerical modelling of MMF-based systems computationally demanding and impractical for the most part of realistic scenarios. Physics-informed neural networks (PINNs) are known to outperform conventional numerical approaches in various domains and have been successfully applied to the nonlinear Schrödinger equation (NLSE) describing light propagation in SMFs. A comprehensive study on application of PINN to the multimode NLSE (MMNLSE) is still lacking though. To the best of our knowledge, this paper is the first to deploy the paradigm of PINN for MMNLSE and to demonstrate that a straightforward implementation of PINNs by analogy with NLSE does not work out. We pinpoint all issues hindering PINN convergence and introduce a novel scaling transformation for the zero-order dispersion coefficient that makes PINN capture all relevant physical effects. Our simulations reveal good agreement with the split-step Fourier (SSF) method and extend numerically attainable propagation lengths up to several hundred meters. All major limitations are also highlighted.
Submission history
From: Pavel Anisimov Dr. [view email][v1] Thu, 29 Sep 2022 09:04:04 UTC (2,133 KB)
Current browse context:
cs.NE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.