Mathematics > Numerical Analysis
[Submitted on 20 Sep 2022 (v1), last revised 7 Mar 2023 (this version, v2)]
Title:Adapted AZNN Methods for Time-Varying and Static Matrix Problems
View PDFAbstract:We present adapted Zhang Neural Networks (AZNN) in which the parameter settings for the exponential decay constant $\eta$ and the length of the start-up phase of basic ZNN are adapted to the problem at hand. Specifically we study experiments with AZNN for time-varying square matrix factorizations as a product of time-varying symmetric matrices and for the time-varying matrix square roots problem. Differing from generally used small $\eta$ values and minimal start-up length phases in ZNN, we adapt the basic ZNN method to work with large or even gigantic $\eta$ settings and arbitrary length start-ups using Euler's low accuracy finite difference formula. These adaptations improve the speed of AZNN's convergence and lower its solution error bounds for our chosen problems significantly to near machine constant or even lower levels.
Parameter-varying AZNN also allows us to find full rank symmetrizers of static matrices reliably, for example for the Kahan and Frank matrices and for matrices with highly ill-conditioned eigenvalues and complicated Jordan structures of dimensions from $n = 2$ on up. This helps in cases where full rank static matrix symmetrizers have never been successfully computed before.
Submission history
From: Frank Uhlig [view email][v1] Tue, 20 Sep 2022 21:12:28 UTC (1,866 KB)
[v2] Tue, 7 Mar 2023 00:18:35 UTC (2,063 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.