Computer Science > Machine Learning
[Submitted on 20 Sep 2022]
Title:Unsupervised Early Exit in DNNs with Multiple Exits
View PDFAbstract:Deep Neural Networks (DNNs) are generally designed as sequentially cascaded differentiable blocks/layers with a prediction module connected only to its last layer. DNNs can be attached with prediction modules at multiple points along the backbone where inference can stop at an intermediary stage without passing through all the modules. The last exit point may offer a better prediction error but also involves more computational resources and latency. An exit point that is `optimal' in terms of both prediction error and cost is desirable. The optimal exit point may depend on the latent distribution of the tasks and may change from one task type to another. During neural inference, the ground truth of instances may not be available and error rates at each exit point cannot be estimated. Hence one is faced with the problem of selecting the optimal exit in an unsupervised setting. Prior works tackled this problem in an offline supervised setting assuming that enough labeled data is available to estimate the error rate at each exit point and tune the parameters for better accuracy. However, pre-trained DNNs are often deployed in new domains for which a large amount of ground truth may not be available. We model the problem of exit selection as an unsupervised online learning problem and use bandit theory to identify the optimal exit point. Specifically, we focus on Elastic BERT, a pre-trained multi-exit DNN to demonstrate that it `nearly' satisfies the Strong Dominance (SD) property making it possible to learn the optimal exit in an online setup without knowing the ground truth labels. We develop upper confidence bound (UCB) based algorithm named UEE-UCB that provably achieves sub-linear regret under the SD property. Thus our method provides a means to adaptively learn domain-specific optimal exit points in multi-exit DNNs. We empirically validate our algorithm on IMDb and Yelp datasets.
Submission history
From: Manjesh Kumar Hanawal [view email][v1] Tue, 20 Sep 2022 05:35:54 UTC (3,326 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.