Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Sep 2022]
Title:VisTaNet: Attention Guided Deep Fusion for Surface Roughness Classification
View PDFAbstract:Human texture perception is a weighted average of multi-sensory inputs: visual and tactile. While the visual sensing mechanism extracts global features, the tactile mechanism complements it by extracting local features. The lack of coupled visuotactile datasets in the literature is a challenge for studying multimodal fusion strategies analogous to human texture perception. This paper presents a visual dataset that augments an existing tactile dataset. We propose a novel deep fusion architecture that fuses visual and tactile data using four types of fusion strategies: summation, concatenation, max-pooling, and attention. Our model shows significant performance improvements (97.22%) in surface roughness classification accuracy over tactile only (SVM - 92.60%) and visual only (FENet-50 - 85.01%) architectures. Among the several fusion techniques, attention-guided architecture results in better classification accuracy. Our study shows that analogous to human texture perception, the proposed model chooses a weighted combination of the two modalities (visual and tactile), thus resulting in higher surface roughness classification accuracy; and it chooses to maximize the weightage of the tactile modality where the visual modality fails and vice-versa.
Submission history
From: Prasanna Kumar Routray [view email][v1] Sun, 18 Sep 2022 09:37:06 UTC (7,226 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.