Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 15 Sep 2022 (v1), last revised 13 Dec 2022 (this version, v4)]
Title:Rethinking the Unpretentious U-net for Medical Ultrasound Image Segmentation
View PDFAbstract:Breast tumor segmentation is one of the key steps that helps us characterize and localize tumor regions. However, variable tumor morphology, blurred boundary, and similar intensity distributions bring challenges for accurate segmentation of breast tumors. Recently, many U-net variants have been proposed and widely used for breast tumors segmentation. However, these architectures suffer from two limitations: (1) Ignoring the characterize ability of the benchmark networks, and (2) Introducing extra complex operations increases the difficulty of understanding and reproducing the network. To alleviate these challenges, this paper proposes a simple yet powerful nested U-net (NU-net) for accurate segmentation of breast tumors. The key idea is to utilize U-Nets with different depths and shared weights to achieve robust characterization of breast tumors. NU-net mainly has the following advantages: (1) Improving network adaptability and robustness to breast tumors with different scales, (2) This method is easy to reproduce and execute, and (3) The extra operations increase network parameters without significantly increasing computational cost. Extensive experimental results with twelve state-of-the-art segmentation methods on three public breast ultrasound datasets demonstrate that NU-net has more competitive segmentation performance on breast tumors. Furthermore, the robustness of NU-net is further illustrated on the segmentation of renal ultrasound images. The source code is publicly available on this https URL.
Submission history
From: Gongping Chen [view email][v1] Thu, 15 Sep 2022 10:11:03 UTC (1,563 KB)
[v2] Mon, 31 Oct 2022 08:47:17 UTC (1,589 KB)
[v3] Fri, 11 Nov 2022 11:48:29 UTC (1,585 KB)
[v4] Tue, 13 Dec 2022 02:10:08 UTC (1,619 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.