Electrical Engineering and Systems Science > Systems and Control
[Submitted on 14 Sep 2022]
Title:Analytics and Machine Learning Powered Wireless Network Optimization and Planning
View PDFAbstract:It is important that the wireless network is well optimized and planned, using the limited wireless spectrum resources, to serve the explosively growing traffic and diverse applications needs of end users. Considering the challenges of dynamics and complexity of the wireless systems, and the scale of the networks, it is desirable to have solutions to automatically monitor, analyze, optimize, and plan the network. This article discusses approaches and solutions of data analytics and machine learning powered optimization and planning. The approaches include analyzing some important metrics of performances and experiences, at the lower layers and upper layers of open systems interconnection (OSI) model, as well as deriving a metric of the end user perceived network congestion indicator. The approaches include monitoring and diagnosis such as anomaly detection of the metrics, root cause analysis for poor performances and experiences. The approaches include enabling network optimization with tuning recommendations, directly targeting to optimize the end users experiences, via sensitivity modeling and analysis of the upper layer metrics of the end users experiences v.s. the improvement of the lower layers metrics due to tuning the hardware configurations. The approaches also include deriving predictive metrics for network planning, traffic demand distributions and trends, detection and prediction of the suppressed traffic demand, and the incentives of traffic gains if the network is upgraded. These approaches of optimization and planning are for accurate detection of optimization and upgrading opportunities at a large scale, enabling more effective optimization and planning such as tuning cells configurations, upgrading cells capacity with more advanced technologies or new hardware, adding more cells, etc., improving the network performances and providing better experiences to end users.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.