Computer Science > Databases
[Submitted on 12 Sep 2022]
Title:Efficient query evaluation techniques over large amount of distributed linked data
View PDFAbstract:As RDF becomes more widely established and the amount of linked data is rapidly increasing, the efficient querying of large amount of data becomes a significant challenge. In this paper, we propose a family of algorithms for querying large amount of linked data in a distributed manner. These query evaluation algorithms are independent of the way the data is stored, as well as of the particular implementation of the query evaluation. We then use the MapReduce paradigm to present a distributed implementation of these algorithms and experimentally evaluate them, although the algorithms could be straightforwardly translated into other distributed processing frameworks. We also investigate and propose multiple query decomposition approaches of Basic Graph Patterns (subclass of SPARQL queries) that are used to improve the overall performance of the distributed query answering. A deep analysis of the effectiveness of these decomposition algorithms is also provided.
Current browse context:
cs.DB
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.