Mathematics > Numerical Analysis
[Submitted on 12 Sep 2022 (v1), last revised 21 Dec 2022 (this version, v2)]
Title:Riccati-feedback Control of a Two-dimensional Two-phase Stefan Problem
View PDFAbstract:We discuss the feedback control problem for a two-dimensional two-phase Stefan problem. In our approach, we use a sharp interface representation in combination with mesh-movement to track the interface position. To attain a feedback control, we apply the linear-quadratic regulator approach to a suitable linearization of the problem. We address details regarding the discretization and the interface representation therein. Further, we document the matrix assembly to generate a non-autonomous generalized differential Riccati equation. To numerically solve the Riccati equation, we use low-rank factored and matrix-valued versions of the non-autonomous backward differentiation formulas, which incorporate implicit index reduction techniques. For the numerical simulation of the feedback controlled Stefan problem, we use a time-adaptive fractional-step-theta scheme.
We provide the implementations for the developed methods and test these in several numerical experiments. With these experiments we show that our feedback control approach is applicable to the Stefan control problem and makes this large-scale problem computable. Also, we discuss the influence of several controller design parameters, such as the choice of inputs and outputs.
Submission history
From: Björn Baran [view email][v1] Mon, 12 Sep 2022 17:59:32 UTC (3,799 KB)
[v2] Wed, 21 Dec 2022 13:31:11 UTC (3,320 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.