Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Sep 2022]
Title:Sparsity-guided Network Design for Frame Interpolation
View PDFAbstract:DNN-based frame interpolation, which generates intermediate frames from two consecutive frames, is often dependent on model architectures with a large number of features, preventing their deployment on systems with limited resources, such as mobile devices. We present a compression-driven network design for frame interpolation that leverages model pruning through sparsity-inducing optimization to greatly reduce the model size while attaining higher performance. Concretely, we begin by compressing the recently proposed AdaCoF model and demonstrating that a 10 times compressed AdaCoF performs similarly to its original counterpart, where different strategies for using layerwise sparsity information as a guide are comprehensively investigated under a variety of hyperparameter settings. We then enhance this compressed model by introducing a multi-resolution warping module, which improves visual consistency with multi-level details. As a result, we achieve a considerable performance gain with a quarter of the size of the original AdaCoF. In addition, our model performs favorably against other state-of-the-art approaches on a wide variety of datasets. We note that the suggested compression-driven framework is generic and can be easily transferred to other DNN-based frame interpolation algorithms. The source code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.