Computer Science > Cryptography and Security
[Submitted on 2 Sep 2022]
Title:Automatic Detection of Speculative Execution Combinations
View PDFAbstract:Modern processors employ different prediction mechanisms to speculate over different kinds of instructions. Attackers can exploit these prediction mechanisms simultaneously in order to trigger leaks about speculatively-accessed data. Thus, sound reasoning about such speculative leaks requires accounting for all potential mechanisms of speculation. Unfortunately, existing formal models only support reasoning about fixed, hard-coded mechanisms of speculation, with no simple support to extend said reasoning to new mechanisms.
In this paper we develop a framework for reasoning about composed speculative semantics that capture speculation due to different mechanisms and implement it as part of the Spectector verification tool. We implement novel semantics for speculating over store and return instructions and combine them with the semantics for speculating over branches. Our framework yields speculative semantics for speculating over any combination of those instructions that are secure by construction, i.e., we obtain these security guarantees for free. The implementation of our novel semantics in Spectector let us verify existing codebases that are vulnerable to Spectre v1, Spectre v4, and Spectre v5 vulnerabilities as well as new snippets that are only vulnerable to their compositions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.