Electrical Engineering and Systems Science > Signal Processing
[Submitted on 3 Sep 2022]
Title:Augmented Deep Unfolding for Downlink Beamforming in Multi-cell Massive MIMO With Limited Feedback
View PDFAbstract:In limited feedback multi-user multiple-input multiple-output (MU-MIMO) cellular networks, users send quantized information about the channel conditions to the associated base station (BS) for downlink beamforming. However, channel quantization and beamforming have been treated as two separate tasks conventionally, which makes it difficult to achieve global system optimality. In this paper, we propose an augmented deep unfolding (ADU) approach that jointly optimizes the beamforming scheme at the BSs and the channel quantization scheme at the users. In particular, the classic WMMSE beamformer is unrolled and a deep neural network (DNN) is leveraged to pre-process its input to enhance the performance. The variational information bottleneck technique is adopted to further improve the performance when the feedback capacity is strictly restricted. Simulation results demonstrate that the proposed ADU method outperforms all the benchmark schemes in terms of the system average rate.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.