Computer Science > Sound
[Submitted on 1 Sep 2022]
Title:Generating Coherent Drum Accompaniment With Fills And Improvisations
View PDFAbstract:Creating a complex work of art like music necessitates profound creativity. With recent advancements in deep learning and powerful models such as transformers, there has been huge progress in automatic music generation. In an accompaniment generation context, creating a coherent drum pattern with apposite fills and improvisations at proper locations in a song is a challenging task even for an experienced drummer. Drum beats tend to follow a repetitive pattern through stanzas with fills or improvisation at section boundaries. In this work, we tackle the task of drum pattern generation conditioned on the accompanying music played by four melodic instruments: Piano, Guitar, Bass, and Strings. We use the transformer sequence to sequence model to generate a basic drum pattern conditioned on the melodic accompaniment to find that improvisation is largely absent, attributed possibly to its expectedly relatively low representation in the training data. We propose a novelty function to capture the extent of improvisation in a bar relative to its neighbors. We train a model to predict improvisation locations from the melodic accompaniment tracks. Finally, we use a novel BERT-inspired in-filling architecture, to learn the structure of both the drums and melody to in-fill elements of improvised music.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.