Computer Science > Machine Learning
[Submitted on 30 Aug 2022 (v1), last revised 10 Apr 2023 (this version, v3)]
Title:Deep Generative Modeling on Limited Data with Regularization by Nontransferable Pre-trained Models
View PDFAbstract:Deep generative models (DGMs) are data-eager because learning a complex model on limited data suffers from a large variance and easily overfits. Inspired by the classical perspective of the bias-variance tradeoff, we propose regularized deep generative model (Reg-DGM), which leverages a nontransferable pre-trained model to reduce the variance of generative modeling with limited data. Formally, Reg-DGM optimizes a weighted sum of a certain divergence and the expectation of an energy function, where the divergence is between the data and the model distributions, and the energy function is defined by the pre-trained model w.r.t. the model distribution. We analyze a simple yet representative Gaussian-fitting case to demonstrate how the weighting hyperparameter trades off the bias and the variance. Theoretically, we characterize the existence and the uniqueness of the global minimum of Reg-DGM in a non-parametric setting and prove its convergence with neural networks trained by gradient-based methods. Empirically, with various pre-trained feature extractors and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs with limited data and achieves competitive results to the state-of-the-art methods. Our implementation is available at this https URL.
Submission history
From: Yong Zhong [view email][v1] Tue, 30 Aug 2022 10:28:50 UTC (48,700 KB)
[v2] Fri, 30 Sep 2022 07:08:39 UTC (48,838 KB)
[v3] Mon, 10 Apr 2023 09:27:28 UTC (47,897 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.