Computer Science > Machine Learning
[Submitted on 29 Aug 2022 (v1), last revised 20 May 2023 (this version, v2)]
Title:Shaken, and Stirred: Long-Range Dependencies Enable Robust Outlier Detection with PixelCNN++
View PDFAbstract:Reliable outlier detection is critical for real-world deployment of deep learning models. Although extensively studied, likelihoods produced by deep generative models have been largely dismissed as being impractical for outlier detection. First, deep generative model likelihoods are readily biased by low-level input statistics. Second, many recent solutions for correcting these biases are computationally expensive, or do not generalize well to complex, natural datasets. Here, we explore outlier detection with a state-of-the-art deep autoregressive model: PixelCNN++. We show that biases in PixelCNN++ likelihoods arise primarily from predictions based on local dependencies. We propose two families of bijective transformations -- ``stirring'' and ``shaking'' -- which ameliorate low-level biases and isolate the contribution of long-range dependencies to PixelCNN++ likelihoods. These transformations are inexpensive and readily computed at evaluation time. We test our approaches extensively with five grayscale and six natural image datasets and show that they achieve or exceed state-of-the-art outlier detection, particularly on datasets with complex, natural images. We also show that our solutions work well with other types of generative models (generative flows and variational autoencoders) and that their efficacy is governed by each model's reliance on local dependencies. In sum, lightweight remedies suffice to achieve robust outlier detection on image data with deep generative models.
Submission history
From: Barath Mohan Umapathi [view email][v1] Mon, 29 Aug 2022 13:17:22 UTC (3,579 KB)
[v2] Sat, 20 May 2023 20:14:06 UTC (4,366 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.