Electrical Engineering and Systems Science > Systems and Control
[Submitted on 23 Aug 2022 (v1), last revised 3 Sep 2024 (this version, v3)]
Title:Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions
View PDF HTML (experimental)Abstract:Learning-based control has recently shown great efficacy in performing complex tasks for various applications. However, to deploy it in real systems, it is of vital importance to guarantee the system will stay safe. Control Barrier Functions (CBFs) offer mathematical tools for designing safety-preserving controllers for systems with known dynamics. In this article, we first introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers using Gaussian Process (GP) regression to close the gap between an approximate mathematical model and the real system, which results in a second-order cone program (SOCP)-based control design. We then present the pointwise feasibility conditions of the resulting safety controller, highlighting the level of richness that the available system information must meet to ensure safety. We use these conditions to devise an event-triggered online data collection strategy that ensures the recursive feasibility of the learned safety controller. Our method works by constantly reasoning about whether the current information is sufficient to ensure safety or if new measurements under active safe exploration are required to reduce the uncertainty. As a result, our proposed framework can guarantee the forward invariance of the safe set defined by the CBF with high probability, even if it contains a priori unexplored regions. We validate the proposed framework in two numerical simulation experiments.
Submission history
From: Fernando CastaƱeda [view email][v1] Tue, 23 Aug 2022 05:02:09 UTC (578 KB)
[v2] Tue, 26 Sep 2023 21:40:19 UTC (3,450 KB)
[v3] Tue, 3 Sep 2024 23:41:14 UTC (3,589 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.