Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Aug 2022 (v1), last revised 11 Nov 2022 (this version, v2)]
Title:Faint Features Tell: Automatic Vertebrae Fracture Screening Assisted by Contrastive Learning
View PDFAbstract:Long-term vertebral fractures severely affect the life quality of patients, causing kyphotic, lumbar deformity and even paralysis. Computed tomography (CT) is a common clinical examination to screen for this disease at early stages. However, the faint radiological appearances and unspecific symptoms lead to a high risk of missed diagnosis, especially for the mild vertebral fractures. In this paper, we argue that reinforcing the faint fracture features to encourage the inter-class separability is the key to improving the accuracy. Motivated by this, we propose a supervised contrastive learning based model to estimate Genent's Grade of vertebral fracture with CT scans. The supervised contrastive learning, as an auxiliary task, narrows the distance of features within the same class while pushing others away, enhancing the model's capability of capturing subtle features of vertebral fractures. Our method has a specificity of 99% and a sensitivity of 85% in binary classification, and a macro-F1 of 77% in multi-class classification, indicating that contrastive learning significantly improves the accuracy of vertebrae fracture screening. Considering the lack of datasets in this field, we construct a database including 208 samples annotated by experienced radiologists. Our desensitized data and codes will be made publicly available for the community.
Submission history
From: Xin Wei [view email][v1] Tue, 23 Aug 2022 02:39:08 UTC (2,979 KB)
[v2] Fri, 11 Nov 2022 03:35:59 UTC (1,981 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.