Electrical Engineering and Systems Science > Systems and Control
[Submitted on 19 Aug 2022]
Title:Approximate Dynamic Programming for Platoon Coordination under Hours-of-Service Regulations
View PDFAbstract:Truck drivers are required to stop and rest with a certain regularity according to the driving and rest time regulations, also called Hours-of-Service (HoS) regulations. This paper studies the problem of optimally forming platoons when considering realistic HoS regulations. In our problem, trucks have fixed routes in a transportation network and can wait at hubs along their routes to form platoons with others while fulfilling the driving and rest time constraints. We propose a distributed decision-making scheme where each truck controls its waiting times at hubs based on the predicted schedules of others. The decoupling of trucks' decision-makings contributes to an approximate dynamic programming approach for platoon coordination under HoS regulations. Finally, we perform a simulation over the Swedish road network with one thousand trucks to evaluate the achieved platooning benefits under the HoS regulations in the European Union (EU). The simulation results show that, on average, trucks drive in platoons for 37% of their routes if each truck is allowed to be delayed for 5% of its total travel time. If trucks are not allowed to be delayed, they drive in platoons for 12% of their routes.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.