Computer Science > Machine Learning
[Submitted on 18 Aug 2022 (v1), last revised 20 Jan 2023 (this version, v2)]
Title:Generating Synthetic Clinical Data that Capture Class Imbalanced Distributions with Generative Adversarial Networks: Example using Antiretroviral Therapy for HIV
View PDFAbstract:Clinical data usually cannot be freely distributed due to their highly confidential nature and this hampers the development of machine learning in the healthcare domain. One way to mitigate this problem is by generating realistic synthetic datasets using generative adversarial networks (GANs). However, GANs are known to suffer from mode collapse thus creating outputs of low diversity. This lowers the quality of the synthetic healthcare data, and may cause it to omit patients of minority demographics or neglect less common clinical practices. In this paper, we extend the classic GAN setup with an additional variational autoencoder (VAE) and include an external memory to replay latent features observed from the real samples to the GAN generator. Using antiretroviral therapy for human immunodeficiency virus (ART for HIV) as a case study, we show that our extended setup overcomes mode collapse and generates a synthetic dataset that accurately describes severely imbalanced class distributions commonly found in real-world clinical variables. In addition, we demonstrate that our synthetic dataset is associated with a very low patient disclosure risk, and that it retains a high level of utility from the ground truth dataset to support the development of downstream machine learning algorithms.
Submission history
From: Nicholas Kuo [view email][v1] Thu, 18 Aug 2022 06:19:46 UTC (3,291 KB)
[v2] Fri, 20 Jan 2023 05:20:24 UTC (3,429 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.