Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Aug 2022 (v1), last revised 30 Jan 2023 (this version, v2)]
Title:Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training
View PDFAbstract:JPEG image compression algorithm is a widely used technique for image size reduction in edge and cloud computing settings. However, applying such lossy compression on images processed by deep neural networks can lead to significant accuracy degradation. Inspired by the curriculum learning paradigm, we propose a training approach called curriculum pre-training (CPT) for crowd counting on compressed images, which alleviates the drop in accuracy resulting from lossy compression. We verify the effectiveness of our approach by extensive experiments on three crowd counting datasets, two crowd counting DNN models and various levels of compression. The proposed training method is not overly sensitive to hyper-parameters, and reduces the error, particularly for heavily compressed images, by up to 19.70%.
Submission history
From: Arian Bakhtiarnia [view email][v1] Mon, 15 Aug 2022 08:43:21 UTC (1,758 KB)
[v2] Mon, 30 Jan 2023 14:18:23 UTC (1,823 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.