Physics > Physics and Society
[Submitted on 12 Jul 2022 (v1), last revised 24 Sep 2022 (this version, v3)]
Title:Ensembles of Realistic Power Distribution Networks
View PDFAbstract:The power grid is going through significant changes with the introduction of renewable energy sources and incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks which resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes such as geo-coordinates, type of node (residence, transformer, or substation), and edges with attributes such as geometry, type of line (feeder lines, primary or secondary) and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared to standard IEEE test cases) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.
Submission history
From: Rounak Meyur [view email][v1] Tue, 12 Jul 2022 18:03:04 UTC (67,893 KB)
[v2] Tue, 23 Aug 2022 03:25:15 UTC (24,617 KB)
[v3] Sat, 24 Sep 2022 18:54:01 UTC (24,518 KB)
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.