Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Aug 2022 (v1), last revised 19 Nov 2022 (this version, v2)]
Title:Scale-free and Task-agnostic Attack: Generating Photo-realistic Adversarial Patterns with Patch Quilting Generator
View PDFAbstract:\noindent Traditional L_p norm-restricted image attack algorithms suffer from poor transferability to black box scenarios and poor robustness to defense algorithms. Recent CNN generator-based attack approaches can synthesize unrestricted and semantically meaningful entities to the image, which is shown to be transferable and robust. However, such methods attack images by either synthesizing local adversarial entities, which are only suitable for attacking specific contents or performing global attacks, which are only applicable to a specific image scale. In this paper, we propose a novel Patch Quilting Generative Adversarial Networks (PQ-GAN) to learn the first scale-free CNN generator that can be applied to attack images with arbitrary scales for various computer vision tasks. The principal investigation on transferability of the generated adversarial examples, robustness to defense frameworks, and visual quality assessment show that the proposed PQG-based attack framework outperforms the other nine state-of-the-art adversarial attack approaches when attacking the neural networks trained on two standard evaluation datasets (i.e., ImageNet and CityScapes).
Submission history
From: Xiangbo Gao [view email][v1] Fri, 12 Aug 2022 11:25:39 UTC (21,917 KB)
[v2] Sat, 19 Nov 2022 08:21:04 UTC (46,404 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.