Computer Science > Human-Computer Interaction
[Submitted on 8 Aug 2022]
Title:Modular interface for managing cognitive bias in experts
View PDFAbstract:Expert knowledge is required to interpret data across a range of fields. Experts bridge gaps that often exists in our knowledge about relationships between data and the parameters of interest. This is especially true in geoscientific applications, where knowledge of the Earth is derived from interpretations of observable features and relies on predominantly unproven but widely accepted theories. Thus, experts facilitate solutions to otherwise unsolvable problems. However, experts are inherently subjective, and susceptible to cognitive biases and adverse external effects. This work examines this problem within geoscience. Three compelling examples are provided of the prevalence of cognitive biases from previous work. The problem is then formally defined, and a set of design principles which ensure that any solution is sufficiently flexible to be readily applied to the range of geoscientific problems. No solutions exist that reliably capture and reduce cognitive bias in experts. However, formal expert elicitation methods can be used to assess expert variation, and a variety of approaches exist that may help to illuminate uncertainties, avoid misunderstandings, and reduce herding behaviours or single-expert over-dominance. This work combines existing and future approaches to reduce expert suboptimality through a flexible modular design where each module provides a specific function. The design centres around action modules that force a stop-and-perform step into interpretation tasks. A starter-pack of modules is provided as an example of the conceptual design. This simple bias-reduction system may readily be applied in organisations and during everyday interpretations through to tasks for major commercial ventures.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.