Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Aug 2022 (v1), last revised 12 Dec 2022 (this version, v3)]
Title:Multi-Task Transformer with uncertainty modelling for Face Based Affective Computing
View PDFAbstract:Face based affective computing consists in detecting emotions from face images. It is useful to unlock better automatic comprehension of human behaviours and could pave the way toward improved human-machines interactions. However it comes with the challenging task of designing a computational representation of emotions. So far, emotions have been represented either continuously in the 2D Valence/Arousal space or in a discrete manner with Ekman's 7 basic emotions. Alternatively, Ekman's Facial Action Unit (AU) system have also been used to caracterize emotions using a codebook of unitary muscular activations. ABAW3 and ABAW4 Multi-Task Challenges are the first work to provide a large scale database annotated with those three types of labels. In this paper we present a transformer based multi-task method for jointly learning to predict valence arousal, action units and basic emotions. From an architectural standpoint our method uses a taskwise token approach to efficiently model the similarities between the tasks. From a learning point of view we use an uncertainty weighted loss for modelling the difference of stochasticity between the three tasks annotations.
Submission history
From: Gauthier Tallec [view email][v1] Sat, 6 Aug 2022 12:25:12 UTC (27 KB)
[v2] Wed, 24 Aug 2022 14:58:09 UTC (27 KB)
[v3] Mon, 12 Dec 2022 10:20:51 UTC (27 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.